这不是石建萍第一次来CVPR了。过去这八年,她几乎没落下过一届,倒也习惯了每年办一次美国签证。只不过,这么多年以来,参加CVPR的身份却在不断变化:从一个本科生,到博士生,到研究员,再到如今商汤科技的研究总监。 她今年带来了五篇CVPR论文,其中一篇Oral和两篇Spotlight,这个数量已经算是相当出色。商汤科技今年也破纪录地入选了44篇论文,仅次于谷歌的45篇。工业界的一家公司有40多篇论文入选CVPR,这在过去绝对是难...
人脸识别产业链上游为基础层,包括人工智能芯片、算法技术和数据集;中游由视频人脸识别、图片人脸识别和数据库对比检验等技术层构成,大体包括人脸检测、活体检测、人脸识别、视频对象提取与分析等技术;下游则是具体的场景应用,即应用方案、消费类终端或服务等。下游以摄像头为主的硬件采集端和应用端采集人脸数据,为数据集丰富数据,对于基础层算法的更新迭代形成正反馈。 目前,国外巨头公司大多呈现全产业布局的特征,即上中下游均有...
误报率(False Negative)是指本来是负样例(两张不同人的人脸),但分类成了正样例(算法认为是同一个人),通俗地讲可以称之为「报警错误」。「报警错误」的次数/总次数,得出的数据即为误报率。在误报率相同的情况下,识别准确率越高,则表示技术的性能越好。 人脸识别精度的提高,意味着在特定场景下用户将获得更好的体验,以及单位工作时间内效率低大幅提升,比如在银行场景下的顾客会获得更好的体验,公共安防领域的一线警务人员的无效工作...
有「工业界黄金标准」之称的美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)最近公布了全球人脸识别算法测试(FRVT)结果 FRVT 2018,目前全球工业界最好水平的人脸识别技术,在百万分之一误报下的准确率达到 99.3%,千万分之一误报下的准确率已经接近 99%。 误报率(False Negative)是指本来是负样例(两张不同人的人脸),但分类成了正样例(算法认为是同一个人),通俗地讲可以称之为「报...
随着人工智能(AI)技术的广泛应用,确保AI技术没有偏见变得越来越重要。IBM计划发布一个大型的、无偏见的人脸图像数据集,以推动无偏见的人脸识别研究。 与以往相比,人类社会对人工智能系统中的偏见问题更加关注,尤其是用于识别和分析人脸图像的系统。在IBM,科研人员采取以下措施来确保以负责任的方式来创建并训练面部识别技术: (1)导致面部分析领域出现偏见的最大问题之一是缺乏训练系统的各种数据。因此,科研人员打算在2018年...